Electrical Formulas

General Formulas

The following formula wheel can be used for all direct current circuits and alternating current circuits with unity power factor.

Voltage Drop Formulas

Voltage Drop $(1\emptyset) = \frac{2 \text{ x L x K x I}}{\text{CM}}$

Voltage Drop $(3\emptyset) = \frac{1.732 \text{ x L x K x I}}{\text{CM}}$

- K = direct current resistance for a 1,000 circular mil conductor 1,000 feet long operating at 75°C
- K = 12.9 ohms for copper
- K = 21.2 ohms for aluminum
- (From NEC Chapter 9, Table 8)

L = One way length of circuit in feet I = Current in conductor in amperes

Voltage Drop $(1\emptyset) = R \times I$ R = Resistance of both conductors

Voltage Drop $(3\emptyset) = R \times I \times 1.732$ R = Resistance of one conductor

 $V_L = V$ Line = Source Voltage $V_P = V$ Phase = Phase Voltage $V_L = V_P$

$$\begin{split} I_L &= I \text{ Line} = Line \text{ Current} \\ I_P &= I \text{ Phase} = \text{Phase Current} \\ I_L &= I_P \text{ x } 1.732 \\ I_P &= I_L \, / 1.732 \end{split}$$

Power = W = $\sqrt{3} \times V_L I_L \cos \theta$ = $3 I_p^2 R$ = $3 V_p I_p \cos \theta$

 $V_L = V$ Line = Source Voltage $V_P = V$ Phase = Phase Voltage $V_L = V_P \ge 1.732$

$$\begin{split} I_L &= I \text{ Line} = \text{Line Current} \\ I_P &= I \text{ Phase} = \text{Phase Current} \\ I_L &= I_P \\ \text{Power} &= W = \sqrt{3} \text{ x } V_L I_L \cos \theta \\ &= 3 \text{ } I_p^2 R \\ &= 3 \text{ } V_p I_p \cos \theta \end{split}$$

Power Factor = <u>True Power</u> Apparent Power

Note 1 - Use copper conductors for all problems, unless otherwise specified. Note 2 - One horse power is equal to 746 watts.

Note 3 - Power factor (P.F.) = $\cos \theta = R/Z$, Z = Impedance.

Note 4 - Efficiency = Output/Input